Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum.

نویسندگان

  • Ying Fan
  • Peter Solomon
  • Richard P Oliver
  • Leonid S Brown
چکیده

Eukaryotic microbial rhodopsins are widespread bacteriorhodopsin-like proteins found in many lower eukaryotic groups including fungi. Many fungi contain multiple rhodopsins, some significantly diverged from the original bacteriorhodopsin template. Although few fungal rhodopsins have been studied biophysically, both fast-cycling light-driven proton pumps and slow-cycling photosensors have been found. The purpose of this study was to characterize photochemically a new subgroup of fungal rhodopsins, the so-called auxiliary group. The study used the two known rhodopsin genes from the fungal wheat pathogen, Phaeosphaeria nodorum. One of the genes is a member of the auxiliary group while the other is highly similar to previously characterized proton-pumping Leptosphaeria rhodopsin. Auxiliary rhodopsin genes from a range of species form a distinct group with a unique primary structure and are located in carotenoid biosynthesis gene cluster. Amino acid conservation pattern suggests that auxiliary rhodopsins retain the transmembrane core of bacteriorhodopsins, including all residues important for proton transport, but have unique polar intramembrane residues. Spectroscopic characterization of the two yeast-expressed Phaeosphaeria rhodopsins showed many similarities: absorption spectra, conformation of the retinal chromophore, fast photocycling, and carboxylic acid protonation changes. It is likely that both Phaeosphaeria rhodopsins are proton-pumping, at least in vitro. We suggest that auxiliary rhodopsins have separated from their ancestors fairly recently and have acquired the ability to interact with as yet unidentified transducers, performing a photosensory function without changing their spectral properties and basic photochemistry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SnPKS19 Encodes the Polyketide Synthase for Alternariol Mycotoxin Biosynthesis in the Wheat Pathogen Parastagonospora nodorum.

Alternariol (AOH) is an important mycotoxin from the Alternaria fungi. AOH was detected for the first time in the wheat pathogen Parastagonospora nodorum in a recent study. Here, we exploited reverse genetics to demonstrate that SNOG_15829 (SnPKS19), a close homolog of Penicillium aethiopicum norlichexanthone (NLX) synthase gene gsfA, is required for AOH production. We further validate that SnP...

متن کامل

RNA polymerase II gene (RPB2) encoding the second largest protein subunit in Phaeosphaeria nodorum and P. avenaria.

A 5586 bp sequence (accession no. DQ278491), which includes the RNA polymerase II gene (RPB2) encoding the second largest protein subunit (RPB2), was obtained from the wheat biotype Phaeosphaeria nodorum (PN-w) by PCR amplification. The 3841 bp full length RPB2 gene contains two exons and a 52 bp intron, and encodes a complete 1262 amino acid protein. Similar to the C-terminals of the beta subu...

متن کامل

Frequency of Phaeosphaeria nodorum, the Sexual Stage of Stagonospora nodorum, on Winter Wheat in North Carolina.

ABSTRACT Ascocarps of Phaeosphaeria nodorum, which causes Stagonospora nodorum blotch (SNB) of wheat, have not been found by others in the eastern United States despite extensive searches. We sampled tissues from living wheat plants or wheat debris in Kinston, NC, each month except June from May to October 2003. Additional wheat samples were gathered in Kinston, Salisbury, and Plymouth, NC, in ...

متن کامل

An in planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum.

Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1807 11  شماره 

صفحات  -

تاریخ انتشار 2011